UPDATE mdl_worksheet_usrreport SET total_visit = 887 WHERE pid = 21 and uid = and child_id = TeenEinstein - Get 24/7 Homework Help | STEM Tutoring | NEET | IIT JEE | CBSE | Learn Coding | | Wrkqus |

Quadratic Functions

  • 1) Identify the vertex of the graph. Tell whether it is a minimum or maximum.

  • smile
  •   (0, 1) maximum
  •   (0, 0) minimum
  •   (0, 0) maximum
  •   (0, 1) minimum
  • 2) Which of the quadratic functions has the narrowest graph?

  • smile
  •   y = -3x²
  •   y = -4x²
  •   y = 1/7x²
  •   y = 1/3x
  • 3) If an object is dropped from a height of 39 feet, the function h(t) = −16t² + 39 gives the height of the object after t seconds. Graph the function.

  • smile
  •   a
  •   c
  •   d
  •   b
  • 4) A ball is thrown into the air with an upward velocity of 48 ft/s. Its height h in feet after t seconds is given by the function h = −16t² + 48t + 8. In how many seconds does the ball reach its maximum height? Round to the nearest hundredth if necessary. What is the ball’s maximum height?

  • smile
  •   1.5 secs, 44 ft
  •   1.5 secs, 56 ft
  •   1.5 secs, 116 ft
  •   3 secs, 8 ft
  • 5) Solve the equation: x² – 15 = 34

  • smile
  •   7
  •   ±7
  •   No real number solutions
  •   ±49
  • 6) Solve (x - 8)(4x + 2) = 0 using the Zero Product Property.

  • smile
  •   x = -8, 1/2
  •   x = -8, -1/2
  •   x = 8, 1/2
  •   x = 8, -1/2
  • 7) Solve the equation by factoring: z² − 4z −12 = 0

  • smile
  •   z = 6, 2
  •   z = 6,-2
  •   z = -6, -2
  •   z = -6, 2
  • 8) Solve the equation by completing the square: x² +2x - 6 = 0

  • smile
  •   -1.65, - 3.65
  •   2.24, 2.65
  •   - 8, 6
  •   1.86, - 3.86
  • 9) Use the Quadratic Formula to solve the following equations. 2a² - 46a + 252 = 0

  • smile
  •   - 18, 28
  •   18, 28
  •   9, 14
  •   - 9, - 14
  • 10) Use the Quadratic Formula to solve the following equations. x² + 6x +18 = 0

  • smile
  •   -3 ±√-3
  •   -3 ± 3.3
  •   0 , -6
  •   No solution
  • 11) A rocket is launched from a top of 56-foot cliff with an initial velocity of 135 ft/s. Substitute the values into the vertical motion formula h = - 16t² +vt + c. Let h = 0. Use the quadratic formula find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.

  • smile
  •   4.8 s
  •   0 = - 16t² + 135t + 56; 4.8 s
  •   0 = - 16t² + 56t + 135; 0.4 s
  •   0 = - 16t² + 56t + 135; 8.8 s
  • 12) For which discriminant is the graph possible?

  • smile
  •   b² - 4ac = 4
  •   None of these
  •   b² - 4ac = 0
  •   b² - 4ac = - 9
  • 13) Find the number of real solutions for the following equations. x² - 12x + 36 = 0

  • smile
  •   2
  •   None of these
  •   0
  •   1
  • 14) Find the number of real solutions for the following equations. x² - 5 = 0

  • smile
  •   1
  •   0
  •   20
  •   None of these
  • 15) Use the following functions to answer the questions: f(x) = 3x − 2, g(x) = 3x² + 2x− 1, h(x) = 4x + 8 and k(x) = 2x² – x − 9. Find (f/h)when x = 2.

  • smile
  •   4
  •   1/4
  •   2
  •   1
  • 16) Use the following functions to answer the questions : f(x) = 3x - 2, g(x) = 3x² + 2x-1, h(x) = 4x + 8 and k(x) = 2x² - x - 9.17. Find f(x) × h(x).

  • smile
  •   12x² - 16
  •   12x² + 32x + 16
  •   12x² + 32x - 16
  •   12x² + 16x - 16
  • 17) Use the following functions to answer the next set of questions : f(x) = 3x - 2, g(x) = 3x² + 2x -1, h(x) = 4x + 8 and k(x) = 2x² - x - 9. Find g(x) + k(x).

  • smile
  •   -5x² - x +10
  •   5x² + x -10
  •   x² + 3x +8
  •   -x² - 3x - 8
  • 18) Use the following functions to answer the next set of questions : f(x) = 3x − 2, g(x) = 3x² + 2x −1, h(x) = 4x + 8 and k(x) = 2x² – x − 9. Find (g - k)(3)

  • smile
  •   26
  •   38
  •   24
  •   86
  • 19) Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of y = 4x² + 5x - 1

  • smile
  •   x = 5/8, Vertex : (5/8, 59/16)
  •   x = -5/8, Vertex : (-5/8, -91/16)
  •   x = -5/8, Vertex : (5/8,-41/16)
  •   x = 5/8, Vertex : (5/8, 37/8)
  • 20) Suppose you have 56 feet of fencing to enclose a rectangular dog pen. The function A = 28x - x², where x = width, gives you the area of the dog pen in square feet. What width gives you the maximum area? What is the maximum area? Round to the nearest tenth as necessary.

  • smile
  •   Width = 28ft; Area = 196ft²
  •   Width = 28ft; Area = 420ft²
  •   Width = 14ft; Area = 196ft²
  •   Width = 14ft; Area = 588ft²
  • 21) Solve the equation: x² + 20 = 4

  • smile
  •   24
  •   No real number solutions
  •   ± 24
  •   -4
  • 22) Find the zeros of the function h(x)= x² -15x + 50 by factoring

  • smile
  •   x = -10 or -5
  •   x = -2 or - 25
  •   x = 2 or 25
  •   x = 10 or 5
  • 23) Find the vertex of the graph of the quadratic function : y = x² – 3

  • smile
  •   (0,3)
  •   (3,0)
  •   (-3,0)
  •   (0,-3)
  • 24) Identify the vertex of the quadratic function : f(x) = (x - 4)² - 5

  • smile
  •   (-5,4)
  •   (0,4)
  •   (4,-5)
  •   (-5,0)
  • 25) Find the equation of the quadratic function that has the given vertex and given point on its graph. Vertex: (-4,-4) point: (-3,-5)

  • smile
  •   P(x) = -x² – 8x – 20
  •   P(x) = x² + 8x +4
  •   P(x) = x² + 8x – 4
  •   P(x) = -x² + 4x – 4
  • 26) Find the equation of the axis of symmetry of the quadratic function: y = (x + 1)² + 8

  • smile
  •   y = -1
  •   x = -1
  •   x =1
  •   y = 0
  • 27) Find the maximum or minimum point of the function f(x) = x² + 14x + 40 and state whether it is a maximum or minimum

  • smile
  •   (-7,-9); minimum
  •   (-9,-7); maximum
  •   (-9,0); minimum
  •   (0,-7); maximum
  • 28) Solve the equation 10z² + 3z - 3 = 0

  • smile
  •   d
  •   b
  •   a
  •   c
  • 29) Evaluate the discriminant, and predict the type and number of solutions of s² + 3s + 8 = 0

  • smile
  •   -23, two different imaginary
  •   23, two different irrational
  •   23, two different rational
  •   0, one rational
  • 30) Write a quadratic equation in the form ax² + bx + c = 0 that has the solutions(roots)5,and -3

  • smile
  •   x² - 15x + 2 = 0
  •   x² + 2x - 15 = 0
  •   x² - 2x - 15 = 0
  •   x² - 15x - 2 = 0
Maths
S.No Topic Name Date Online Offline
1 LQE Model 12-February
2 Interpreting Functions 11-February
3 Vector and Matrix Quantities 10-February
4 Complex Number 09-February
5 Quantity 08-February
6 Real Number System 05-February
7 Quadratic Equations - Inequalities 04-February
8 Number Sense - Polynomials 03-February
9 Algebra 02-February