UPDATE mdl_worksheet_usrreport SET total_visit = 783 WHERE pid = 27 and uid = and child_id = TeenEinstein - Get 24/7 Homework Help | STEM Tutoring | NEET | IIT JEE | CBSE | Learn Coding | | Wrkqus |

Complex Number

  • 1) Complete the following i³ = ?

  •   -1
  •   -i
  •   i
  •   1
  • 2) Complete the following i¹³⁵ = ?

  •   -i
  •   -1
  •   1
  •   i
  • 3) Complete the following i¹⁹ = ?

  •   -i
  •   i
  •   1
  •   -1
  • 4) Complete the following i⁻⁹⁹⁹ = ?

  •   1
  •   -1
  •   i
  •   -i
  • 5) The real part of i is

  •   1
  •   5
  •   3
  •   0
  • 6) What does e stands for ?

  •   cosθ + i sinθ
  •   sinθ – i cosθ
  •   cosθ - i sinθ
  •   i sinθ + cosθ
  • 7) Compute the given number √-144 =?

  •   12i
  •   -12i
  •   -13i
  •   13i
  • 8) Compute the given number √-169 = ?

  •   i - 13
  •   13/i
  •   13i
  •   i + 13
  • 9) Compute the given √-4 × √-9/4

  •   -2
  •   -4
  •   -3
  •   -1
  • 10) If z = 2 – iy and z = x + 3i then find x and y.

  •   -4,-4
  •   -2, 3
  •   2,-3
  •   -3, 2
  • 11) Find the real values of x and y if (3x – 7) + 2iy = - 5y + (5 +x)i

  •   x = -2 , y = -2
  •   x = 2 , y = -2
  •   x = -1 , y = 2
  •   x = 1 , y = 2
  • 12) Find the values of x and y if (x + iy ) (2 – 3i) = 4 + i

  •   (15/17) , (15/13)
  •   (15 + 13) , (14 - 13)
  •   (15/13) , (14/13)
  •   (15 - 17) , (15 + 13)
  • 13) Find the values of x and y if (1 – i) x + (1 + i) y = 1 – 3i

  •   -1, 2
  •   -2, 1
  •   1, 2
  •   -1,-2
  • 14) Find the value for the relation.

  •   z1
  •   ² -
  •   5(
  •   z2
  • 15) Find real values of x and y(1 + i)y² + (6 + i) = (2 + i)x

  •   3 , ±6
  •   4 , ±7
  •   7 , ±3
  •   5 , ±2
  • 16) Solve the equations 4x² + 9 = 0 by factorization method.

  •   -(4/2)i
  •   (3/2)i
  •   (4/2)i
  •   -(3/2)i
  • 17) Solve the equation x² - 4x + 13 = 0 by factorization method.

  •   5 - 2i , -4 + 3i
  •   2 + 3i , 2 – 3i
  •   -2 - 3i , 4 – 3i
  •   – 3 - 2i, 3 + 2i
  • 18) Solve the equation x² - 5ix – 6 = 0 by factorization method.

  •   3i, - 2i
  •   7i, -8i
  •   3i, 2i
  •   5i, 4i
  • 19) Solve the equation x² + 4ix -4 =0 by factorization method.

  •   2i, 2i
  •   4i, 4i
  •   -2i, -2i
  •   -4i + 4i
  • 20) Solve the equation 3x² + 7ix + 6 =0 by factorization method.

  •   8i, (3/4)i
  •   3i, (2/3)i
  •   4i, (2/3)i
  •   -3i, (2/3)i
  • 21) Solve the equation x² + 1 = 0 by factorization method.

  •   ±2
  •   ±4
  •   ±1
  •   ±3
  • 22) Solve the equation 9x² + 4 = 0 by factorization method.

  •   ± i(5/3)
  •   ± i(3/2)
  •   ± i(2/3)
  •   ± i(9/3)
  • 23) Solve the equation 2x² - 4x + 3 = 0 by formula method.

  •   x = (-1 ± (1 / √2)i)
  •   x = (2 ± (1 / √5)i)
  •   x = (7 ± (6 / √9)i)
  •   x = (1 ± (1 / √2)i)
  • 24) Solve the equation 27x² - 10x + 1 = 0 by formula method.

  •   x = (9 ± i√3)/25
  •   x = (-5 ± i√3)/27
  •   x = (5 ± i√2)/27
  •   x = -(5 ± i√2)/24
  • 25) Solve the equation - x² + x - 2 = 0 by formula method.

  •   x = 1 ± i √5/-2
  •   x = -1 ± i √7/-2
  •   x = 1 ± i √9/-2
  •   x = -1 ± i √7/2
  • 26) Solve the equation x² - 2x + (3/2) = 0 by formula method.

  •   2 ± (i/√9)
  •   2 ± (i/√5)
  •   ±(i /√2)
  •   1 ± (i/√3)
  • 27) Solve the equation 2x² + 3ix + 2 = 0 by formula method.

  •   x = i / 4 or -4i
  •   x = i / 8 or -8i
  •   x = i / 2 or -2i
  •   x = i / 3 or -2i
  • 28) Solve the equation i x² - x + 12i = 0 by formula method.

  •   x = (4/i) or (- 3i)
  •   x = (-4/i) or (3i)
  •   x = (5/i) or (- 3i)
  •   x = (6/i) or (-3i)
  • 29) Solve the equation x² + x + (1 /√2) = 0

  •   x = -3 ± i√(3√2 -1)/6
  •   x = 2 ± i√(2√3 - 1)/4
  •   x = -2 ± i√(2√3 - 1)/3
  •   x = -1 ± i√(2√2 -1)/2
  • 30) Solve the equation x² - 8x + 24 = 0 by completing the square method.

  •   x = - 4 ± 2√2i
  •   x = 3 ± 3√2i
  •   x = 5 ± 5√2i
  •   x = 4 ± 2√2i
Maths
S.No Topic Name Date Online Offline
1 LQE Model 12-February
2 Interpreting Functions 11-February
3 Vector and Matrix Quantities 10-February
4 Quantity 08-February
5 Real Number System 05-February
6 Quadratic Equations - Inequalities 04-February
7 Number Sense - Polynomials 03-February
8 Algebra 02-February
9 Quadratic Functions 01-February