Twelfth Grade - Vector Algebra

- -3
- 6
- -9
- -6

2) What is the value of a. b and hence find the value of ??

1/9

- 100.3°
- 102.4°
- 104.3°
- 101.1°

3) Use the dot product to find the size of angle ??

- 66.8°
- 16.4°
- 59.8°
- 106.8°

4) If k is any positive number, what is the size of the angle between the vectors a	a = (k.	k) and b	= (-3, 4))?
---	---------	----------	-----------	----

- 91.9°
- 81.9°
- 101.1°
- 56.5°

5) Which one of the following is not a unit vector	?
a. (0,1,0) b. (0,0,1) c. (1/?3,1/?3,1/?3) d. (1,1,1)	

- - d • c
 - b
 - a

6) What is the size of the angle between the vectors
$$a = (2, 5, -1)$$
 and $b = (-3, 2, 6)$?

- 98.0
- 93.0
- 96.0
- 99.0

7) Vector a has magnitude 3, vector b has magnitude 4, the angle between a and b is 30° and n is the unit vector at right angles to both a and b. What is a \times b?

- 4n
- 2n
- 5n
- 6n

8) Vector a has magnitude 3?2, vector b has magnitude 5. The angle between a and b is 135° and n is the unit vector at right angles to both a and b. What is the value of a x b?

- 15n
- 13n
- 12n
- 16n
- 9) Vector a has magnitude 1/?3, vector b has magnitude 4, the angle between a and b is 60° and n is the unit vector at right angles to both a and b. What is the value of a \times b?
 - 4n
 - 3n
 - 6n
 - 2n
- 10) What is the cross product of a = (1, 2, 3) and b = (4, 5, 6)?
 - (8, 6, 7)
 - (3, 9, 3)
 - (-3, -6, 3)
 - (-3, 6, -3)
- 11) What is the cross product of a = (-2, 3, 5) and b = (-4, 1, -6)?
 - (-23, -32, 10)
 - (-53, -72, 10)
 - (-29, -72, 30)
 - (-33, -32, 40)
- 12) What is the cross product of a = (2, -5, 1) and b = (3, -2, -4)?
 - (25, 13, 14)
 - (28, 12, 11)
 - (22, 11, 11)
 - (25, 16, 11)

13) If a = (-2, 1, 1), b = (2, 1, 1) and $c = a \times b$, what is the magnitude of c?

- 7?2
- 4?2
- 5?3
- 9?2

14) If a = (2, 0, 1), b = (0, 1, 1/2) and $c = a \times b$, what is the magnitude of c?

- ?6
- ?5
- ?8
- ?3

15) If a = (2, -4, 4), b = (4, 0, 3) and $c = a \times b$, what is the magnitude of c?

- 18?5
- 10?5
- 12?5
- 9?5

16) a, b and c are three vectors such that c is perpendicular to both a and b. What is the value of a \times b \times c?

- (0, 1, 0)
- (1, 0, 0)
- (0, 0, 0)
- (0, 0, 1)

17) What should be added in vector to get its resultant a unit vector i, if a = 3i + 4j - 2k

- -2i 4j + 5k
- -2i + 4j + 2k
- -i j + k

18) The magnitudes of mutually perpendicular forces a, b and c are 2, 10 and 11 respectively. Then t	the
magnitude of its resultant is	

- 12
- 15
- 10
- 13

19	The	position vectors of t	vo points A and B ar	ei+i-kand2i-	i + k respec	tively. Then I	ABI = ?
,		P 0 0 1 1 0 0 1 0 1 0 1 1 1		• · · j · · · · · · · · · · · · · · · ·	, 	, a. v. G. y G p	, .— ı

- 8
- 6
- 0
- 4

- · Linearly dependent
- None of these
- Linearly independent
- Linearly spanning

- 2?
- ?/3
- ?
- 2?/3

22) Let a and b be two vectors of the same magnitude, such that the angle between them is 60° a \times b = 8. Find

$$|\vec{a}|$$
 and $|\vec{b}|$

- 1
- 2
- 5
- 4

23) If vector a = 5i - j - 3k and vector b = i + 3j - 5k, then the vectors $(a + b) \times (a - b)$ is

- Non parallel
- Perpendicular
- Parallel
- Collinear

24) Find

$$\vec{a} \times \vec{b}$$
, if $\vec{a} = 2\vec{i} + \vec{k}$ and $\vec{b} = \vec{i} + \vec{j} + \vec{k}$

- -i j + 2k
- -i j 2k
- i+j+2k
- -2i 3j 2k

25) Find the magnitude of

$$|\vec{a}|$$
 if $\vec{a} = (\vec{i} + 3\vec{j} - 2\vec{k}) \times (-\vec{i} + 3\vec{k})$

- ?91
- ?19

- 91
- 19

26) If a and b are two vectors such that

$$|\vec{a}| = 3$$
 $|\vec{b}| = 2$ $\vec{a} \cdot \vec{b} = 6$, Find $|\vec{a} + \vec{b}|$

- 5
- 7
- 4
- 3

27) Find the values of x for which vectors $a = 2x^2i + 4xj + k$ and 7i - 2j + xk is obtuse.

- 0
- 0 > x > 1/2
- 0
- 0

- 8/7
- 9/7
- 7/8
- 16/7

29) Here which of the following represents the linear combination of vectors?

1.
$$\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$$
 2. $\vec{r} = x\vec{a} - y\vec{b}$ 3. $\vec{r} = x\vec{a}$ 4. None of these

- Both 1 and 2
- · None of these
- Only 1

• Both 1 and 3

30) The magnitude of a vector F is 10 units and the direction of the vector is 60° with the horizontal. Find the components of the vector?

- (4, 4?2)
- (5, 5?3)
- (6, 6?3)
- (9, 9?2)