Ninth Grade - Vector and Matrix Quantities

- 1) Classify whether the quantity 10 kg is
 - Unit
 - Vector
 - · Co initial vectors
 - Scalar
- 2) Classify whether 10 meters north is
 - Vector
 - · Co intial vectors
 - Unit
 - Scalar
- 3) Classify whether 10 Newton is
 - Scalar
 - Unit
 - Vector
 - · Co initial vectors
- 4) Classify whether 10²³ coulomb is
 - Vector
 - · Co initial vectors
 - Scalar
 - Unit
- 5) Let a and b are given vectors such that

If \vec{a} and \vec{b} are collinear and are in the same direction then

- 1
- ab
- 0
- -ab

6) Let a and b are given vectors such that

If \vec{a} and \vec{b} are in the opposite direction then

- 0
- 1
- ab
- -ab

7) Let a and b are given vectors such that

If \vec{a} and \vec{b} are two nonzero vectors then

a)
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$
 b) $\overrightarrow{a} \cdot \overrightarrow{b} \neq 0$ c) $\overrightarrow{a} \propto \overrightarrow{b}$ d) $\overrightarrow{a} \equiv \overrightarrow{b}$

- b
- d
- 0
- a

8) Find angle between two vectors.

If \vec{a} and \vec{b} are two vectors such that

$$\left| \vec{a} \right| = 4 \quad \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6$$

• 1/3

- 1/4
- 1/2
- 1/8
- 9) Find the projection of the vector.

$$(\vec{r}.\vec{j})\vec{i} + (\vec{r}.\vec{i})\vec{j} + (\vec{r}.\vec{k})\vec{k}$$

$$(a)\vec{i} \quad (b)\vec{j} \quad (c)\vec{r} \quad (d)\vec{k}$$

- 8
- b
- d
- C
- 10) Identify the law vectors.

If \vec{a} and \vec{b} represented in magnitude and direction by the two adjacent sides of a parallelogram then their sum \vec{c} is represented by the parallelogram and it is known as

- Law of vectors
- · Quadrilateral law of vectors
- · Parallelogram law of vectors
- Trapezoidal law of vectors
- 11) If the following vectors represented by the side of the triangle taken in order by then

If a,b,c be the vectors represented by the sides of a triangle taken in order then

$$a) \vec{a} + \vec{b} + \vec{c} = 1$$

a)
$$\vec{a} + \vec{b} + \vec{c} = 1$$
 b) $\vec{a} + \vec{b} + \vec{c} = 0$

$$c) \vec{a} + \vec{b} + \vec{c} = 2$$

c)
$$\vec{a} + \vec{b} + \vec{c} = 2$$
 d) $\vec{a} + \vec{b} + \vec{c} = 3$

- C

12) Simplify the following vectors.

If
$$\left| -m(\vec{a}) \right| = ?$$

a)
$$-m \begin{vmatrix} \vec{a} \end{vmatrix} = b$$
) $m \begin{vmatrix} \vec{a} \end{vmatrix} = c$) $m\vec{a} = d$) $-m\vec{a}$

13) If the diagonals of a parallelogram are equal then it is?

- Rhombus
- Rectangle
- Parallelogram
- Trapezium

14) If the vectors are parallel to the same plane then it is

- Coplanar
- Collinear
- Non coplanar
- · Non collinear
- 15) Which of the following is external section formula?
 - a
 - b
 - d
 - C
- 16) Consider the given vectors a and b.

Find the angle between two vectors \vec{a} and \vec{b} having the same length $\sqrt{2}$ and their scalar product is -1

- ?/2
- ?/3
- 2?/3
- 6?/7
- 17) Consider the given vectors a and b.

Let \vec{a} and \vec{b} be two vectors of the same magnitude such that the angle between them is 60° \vec{a} . $\vec{b} = 8$. Find $|\vec{a}|$ and $|\vec{b}|$

- 5
- 3
- 4
- 4

18) Consider the given vectors a and b.

If
$$\vec{a} = 5\vec{i} - \vec{j} - 3\vec{k}$$
 $\vec{b} = \vec{i} + 3\vec{j} - 5\vec{k}$
then the vectors $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$ is

- Non parallel
- Collinear
- · Perpendicular
- Parallel

19) Consider the given vectors a and b.

Find
$$\vec{a} \times \vec{b}$$
 if $\vec{a} = 2\vec{i} + \vec{k}$ $\vec{b} = \vec{i} + \vec{j} + \vec{k}$
 $(a) -\vec{i} - \vec{j} + 2\vec{k}$ $(b) -\vec{j} - \vec{j} + 6\vec{k}$ $(c) -\vec{i} - \vec{i} - 8\vec{k}$ $(d) \vec{k} + \vec{j} - 2\vec{k}$

- a
- C
- d
- h

20) Let ab given vectors then

Find the magnitude $\vec{a} \cdot \vec{a} = (\vec{i} + \vec{j} + \vec{k}) \times (-\vec{i} + 3\vec{k})$

- ?99
- ?93
- ?91
- ?95

21) From the product of given two vectors.

Find
$$\lambda$$
 and μ if $(2\vec{i} + 6\vec{j} + 27\vec{k}) * (\vec{i} + \lambda \vec{j} + \mu \vec{k})$

- 3, 97/7
- 3, 27/2
- 5, 57/2
- 7, 17/2

22) Given magnitude and product of two vectors then

If two vectors \vec{a} and \vec{b} are such that

$$|\vec{a}| = 3$$
 $|\vec{b}| = 2$ $\vec{a} \cdot \vec{b} = 6$ Find $|\vec{a} + \vec{b}|$

- 5
- 2
- 6
- 9

23) Let a and b are two vectors.

Find the values of x for which $\vec{a} = 2x^2\vec{i} + 4x\vec{j} + \vec{k}$ and $\vec{b} = 7\vec{i} - 2\vec{j} + x\vec{k}$ is obtuse

- 0 > x > 1/3
- 0
- 0
- 0 7/2

24) For the given vectors.

Find the projection $7\vec{i} + \vec{j} - 4\vec{k}$ on $2\vec{i} + 6\vec{j} + 3\vec{k}$

- 8/7
- 5/7
- 4/7
- 5/9

25) Here which of the following represents the linear combination of vectors?

a)
$$\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$$
 b) $\vec{r} = x\vec{a} - y\vec{b}$ c) $\vec{r} = x\vec{a}$ d) None

- Both 2 and 3
- Both 1 and 2
- Both 2 and 4
- Both 1 and 2

26) Find the unit vector parallel to the vector?

$$-3\vec{i}+4\vec{j}$$

a)
$$(3/5)\vec{i} + (4/5)\vec{j}$$
 b) $(3/5)\vec{i} - (4/5)\vec{j}$ c) $-(3/5)\vec{i} + (4/5)\vec{j}$ d) $(3/5)\vec{i} + (4/5)\vec{j}$

- d
- b
- a
- 0

27) Find the magnitude of vector?

$$2\vec{i} - \vec{j}$$

- 5
- 6
- 0
- 7

28) Find the value of x, y, z

$$\vec{a} = x\vec{i} + y\vec{i} + z\vec{j}$$
 $\vec{b} = 2\vec{i} + y\vec{j} + \vec{k}$ are equal

- (2,2,1)
- (-2, -2, -1)
- (-2, -2, 1)

29) Find the magnitude of

$$\vec{a} = 3\vec{i} - 6\vec{j} + 2\vec{k}$$

- 5
- 9

30) How can we define.

$$\vec{a} \times \vec{b}$$

a)
$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
 b) $\vec{a} \times \vec{b} = \cos \theta$

$$b) \quad \vec{a} \times \vec{b} = \cos \theta$$

c)
$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$$
 d) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$

$$d) \quad \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$$

- b